Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 14: 1123155, 2023.
Article in English | MEDLINE | ID: covidwho-20238534

ABSTRACT

Introduction: Natural killer (NK) cells plays a pivotal role in the control of viral infections, and their function depend on the balance between their activating and inhibitory receptors. The immune dysregulation observed in COVID-19 patients was previously associated with downregulation of NK cell numbers and function, yet the mechanism of inhibition of NK cell functions and the interplay between infected cells and NK cells remain largely unknown. Methods: In this study we show that SARS-CoV-2 infection of airway epithelial cells can directly influence NK cell phenotype and functions in the infection microenvironment. NK cells were co-cultured with SARS-CoV-2 infected epithelial cells, in a direct contact with A549ACE2/TMPRSS2 cell line or in a microenvironment of the infection in a 3D ex vivo human airway epithelium (HAE) model and NK cell surface expression of a set of most important receptors (CD16, NKG2D, NKp46, DNAM-1, NKG2C, CD161, NKG2A, TIM-3, TIGIT, and PD-1) was analyzed. Results: We observed a selective, in both utilized experimental models, significant downregulation the proportion of CD161 (NKR-P1A or KLRB1) expressing NK cells, and its expression level, which was followed by a significant impairment of NK cells cytotoxicity level against K562 cells. What is more, we confirmed that SARS-CoV-2 infection upregulates the expression of the ligand for CD161 receptor, lectin-like transcript 1 (LLT1, CLEC2D or OCIL), on infected epithelial cells. LLT1 protein can be also detected not only in supernatants of SARS-CoV-2 infected A549ACE2/TMPRSS2 cells and HAE basolateral medium, but also in serum of COVID-19 patients. Finally, we proved that soluble LLT1 protein treatment of NK cells significantly reduces i) the proportion of CD161+ NK cells, ii) the ability of NK cells to control SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells and iii) the production of granzyme B by NK cells and their cytotoxicity capacity, yet not degranulation level. Conclusion: We propose a novel mechanism of SARS-CoV-2 inhibition of NK cell functions via activation of the LLT1-CD161 axis.


Subject(s)
COVID-19 , Receptors, Cell Surface , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Killer Cells, Natural , Receptors, Cell Surface/metabolism , SARS-CoV-2/metabolism
3.
iScience ; 25(11): 104993, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2082224

ABSTRACT

The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.

4.
Cells ; 10(11)2021 11 13.
Article in English | MEDLINE | ID: covidwho-1512139

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the recently emerged virus responsible for the COVID-19 pandemic. Clinical presentation can range from asymptomatic disease and mild respiratory tract infection to severe disease with lung injury, multiorgan failure, and death. SARS-CoV-2 is the third animal coronavirus to emerge in humans in the 21st century, and coronaviruses appear to possess a unique ability to cross borders between species and infect a wide range of organisms. This is somewhat surprising as, except for the requirement of host cell receptors, cell-pathogen interactions are usually species-specific. Insights into these host-virus interactions will provide a deeper understanding of the process of SARS-CoV-2 infection and provide a means for the design and development of antiviral agents. In this study, we describe a complex analysis of SARS-CoV-2 infection using a genome-wide CRISPR-Cas9 knock-out system in HeLa cells overexpressing entry receptor angiotensin-converting enzyme 2 (ACE2). This platform allows for the identification of factors required for viral replication. This study was designed to include a high number of replicates (48 replicates; 16 biological repeats with 3 technical replicates each) to prevent data instability, remove sources of bias, and allow multifactorial bioinformatic analyses in order to study the resulting interaction network. The results obtained provide an interesting insight into the replication mechanisms of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , CRISPR-Cas Systems , Computational Biology , Genome, Human/genetics , HeLa Cells , Host-Pathogen Interactions , Humans , SARS-CoV-2/pathogenicity
5.
PLoS Pathog ; 16(12): e1008959, 2020 12.
Article in English | MEDLINE | ID: covidwho-1388958

ABSTRACT

SARS-CoV-2 genome annotation revealed the presence of 10 open reading frames (ORFs), of which the last one (ORF10) is positioned downstream of the N gene. It is a hypothetical gene, which was speculated to encode a 38 aa protein. This hypothetical protein does not share sequence similarity with any other known protein and cannot be associated with a function. While the role of this ORF10 was proposed, there is growing evidence showing that the ORF10 is not a coding region. Here, we identified SARS-CoV-2 variants in which the ORF10 gene was prematurely terminated. The disease was not attenuated, and the transmissibility between humans was maintained. Also, in vitro, the strains replicated similarly to the related viruses with the intact ORF10. Altogether, based on clinical observation and laboratory analyses, it appears that the ORF10 protein is not essential in humans. This observation further proves that the ORF10 should not be treated as the protein-coding gene, and the genome annotations should be amended.


Subject(s)
COVID-19/virology , Genome, Viral , Mutation , Open Reading Frames/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Virus Replication , Adult , COVID-19/epidemiology , COVID-19/genetics , Codon, Nonsense , Female , Humans , In Vitro Techniques , Male , Middle Aged , Poland/epidemiology , SARS-CoV-2/isolation & purification , Viral Proteins/metabolism
6.
Vascular Pharmacology ; 130, 2020.
Article in English | PMC | ID: covidwho-1386723

ABSTRACT

Angiotensin-converting enzyme (ACE) and its homologue, ACE2, have been mostly associated with hypertensive disorder. However, recent pandemia of SARS-CoV-2 has put these proteins at the center of attention, as this virus has been shown to exploit ACE2 protein to enter cells. Clear difference in the response of affected patients to this virus has urged researchers to find the molecular basis and pathophysiology of the cell response to this virus. Different levels of expression and function of ACE proteins, underlying disorders, consumption of certain medications and the existence of certain genomic variants within ACE genes are possible explanations for the observed difference in the response of individuals to the SARS-CoV-2 infection. In the current review, we discuss the putative mechanisms for this observation.

8.
Biomed Pharmacother ; 128: 110296, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-642573

ABSTRACT

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global crisis, necessitating the identification of genetic factors that modulate the risk of disorder or its severity. The current data about the role of genetic risk factors in determination of rate of SARS-CoV-2 infection in each ethnic group and the severity of disorder is limited. Moreover, several confounding parameters such as the number of tests performed in each country, the structure of the population especially the age distribution, the presence of risk factors for respiratory disorders such as smoking and other environmental factors might be involved in the variability in disease course or prevalence of infection among different ethnic groups. However, assessment of the role of genetic variants in determination of the course of other respiratory infections might help in recognition of possible candidate for further analysis in patients affected with SARS-CoV-2. In the current review, we summarize the data showing the association between genomic variants and risk of acute respiratory distress syndrome, respiratory infections or severity of these conditions with an especial focus on the SARS-CoV-2.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Respiratory Tract Infections/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/physiopathology , Genetic Predisposition to Disease , Genetic Variation , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/physiopathology , Polymorphism, Single Nucleotide , Respiratory Tract Infections/physiopathology , SARS-CoV-2 , Severity of Illness Index
9.
Cytokine ; 133: 155143, 2020 09.
Article in English | MEDLINE | ID: covidwho-400518

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic in early 2020. The infection has been associated with a wide range of clinical symptoms. In the severely affected patients, it has caused dysregulation of immune responses including over-secretion of inflammatory cytokines and imbalances in the proportion of naïve helper T cells, memory helper T cells and regulatory T cells. Identification of the underlying mechanism of such aberrant function of immune system would help in the prediction of disease course and selection of susceptible patients for more intensive cares. In the current review, we summarize the results of studies which reported alterations in cytokine levels and immune cell functions in patients affected with SARS-CoV-2 and related viruses.


Subject(s)
Coronavirus Infections/immunology , Cytokines/metabolism , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Disease Progression , Disease Susceptibility/immunology , Disease Susceptibility/pathology , Humans , Influenza, Human/immunology , Influenza, Human/metabolism , Middle East Respiratory Syndrome Coronavirus , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL